How to use UPA C with Open DACS C++
Updated: July 2016
Introduction
This example aims to show developers how to use Ultra Performance API (UPA) - C with Open DACS C++. UPA C is able to connect to TREP or Elektron Edge device in order to retrieve market data while Open DACS API is able to connect to DACS system in order perform entitlement checks for the users. Developers can integrate both APIs into the same application.
This example is based on the basicConsumer example in UPA-C Tutorial 4 and Open DACS Tutorial 4. It acts as a simple proxy entitlement. It requires two user names. The first user name is used by UPA C in order to login to TREP or Elektron Edge device. The subsequent user name is used by Open DACS to perform subscription checks for the subscribed item. The first user name must be authorized to access all subscribed items.

Design
The basicConsumer example is developed in C language, while the Open DACS is provided in C++ libraries. The application will be to be changed to C++ language to easily call Open DACS interfaces. The main function for this example is to use UPA Value Added components to establish connection and maintain session to TREP or Elektron Edge device. To use Open DACS interfaces, a class named DacsClient has been added for Open DACS usage. The class inherits interfaces from DacsAppClient in order to receive events from Open DACS APIs. The following are related classes/functions of the application.

DacsClient
This class is from Open DACS tutorials. It is a wrapper of Open DACS API and provides interfaces to perform subscription checks.
Buffer
AppClient stores the retrieved DACS lock in the Buffer. Therefore, it can be used to perform content base subscription checks again after receiving a DACS re-permission event.

Implementation
Followings explain the main steps in the example.
1. Get command line arguments

In the main function, it uses a getCmdParams() method to parse the arguments.

	int main(int argc, char* argv[])
{
…
	ret = getCmdParams(
		argc, argv,
		appUserName,
		itemUserName,
		hostName,
		port,
		itemName,
		serviceName,
		dacsConnectionStr,
		appId,
		position
);

The arguments of the examples are:

	Argument Name
	Required
	Description

	-h
	Yes
	The host name or IP address of TREP or Elektron Edge device

	-p
	No
	The TCP port listened on the TREP or Elektron Edge device (The default value is 14002)

	-s
	Yes
	The subscribed service name

	-i
	Yes
	The subscribed item name

	-appUser
	Yes
	The user name used to connect to TREP or Elektron Edge device. This user name must be allowed to access all subscribed items

	-itemUser
	Yes
	The user name used by Open DACS to verify the accessibility of the subscribed item

	-d
	No
	The remote DACS Sink Daemon (host:port). By default, it will use the DACS Sink Daemon running on the local machine

	-position	
	No
	The position used when connecting to DACS system. The default value is 1.0.0.0/net

	-appid
	No
	The application used when connecting to DACS system. The default value is 256

2. Create an instance of DacsClient
After parsing the arguments, the example initializes RSSL connection via Value Added UPA components in the init() function. In this function, it will create an instance of DacsClient. The constructor of DacsClient requires the RFA event queue, RFA standard principal identity, remote DACS Sink Daemon, and an instance of AppClient.

		pEventQueue = rfa::common::EventQueue::create(rfa::common::RFA_String("EventQueue"));
	
	spi.setName(itemUserName);
	spi.setPosition(position);
	spi.setAppName(appId);

	pDacsClient= new DacsClient(*pEventQueue, spi, dacsConnectionStr);
		

The application uses an item’s user name, position, and application ID to create a standard principal identity

3. Dispatch DACS events
Then, the example calls mainEventLoop() method to detect channel notification, then dispatch via rsslReactorDispatch() interface. In this loop, the example will also call EventQueue::dispatch() function to dispatch DACS events to callback methods in basicConsumer.cpp.
	if (pEventQueue)
{
	long dispatchReturn = pEventQueue->dispatch(10);
}

4. Initialize DacsClient
Once the RSSL channel is established and ready for sending request, the example will verify if the Open DACS has already initialized and logged in to DACS system. This is used for handling the connection recovery scenario where the RSSL channel is re-established but Open DACS still login to the DACS system.
If Open DACS is not initialized, the example will call DacsClient::init() method to connect to DACS Sink Daemon in order to authenticate an item’s user name. After that, the example regularly calls EventQueue:dispatch() to dispatch DACS events to the callback methods defined in basicConsumer.cpp.

	RsslReactorCallbackRet channelEventCallback(RsslReactor *pReactor, RsslReactorChannel *pReactorChannel, RsslReactorChannelEvent *pConnEvent)
{
	switch (pConnEvent->channelEventType)
	{
	…
	 case RSSL_RC_CET_CHANNEL_READY:
			pRsslReactorChannel = pReactorChannel;

			printf("\nChannel is ready.\n");
		
			if (pDacsClient->getLoginStatus() == DacsClient::LoginSucceeded)
			{
				printf("\nAlready logged in to DACS system, Subscribing to %s\n", itemName.c_str());
				processDacsLogin(pDacsClient);
			} else
			{
				printf("\nInitialize Open DACS components\n");
				if (pDacsClient->init() != 0) //DACSAUTH_SUCCESS
				{
					printf("DACS initialization failed\n");
					cleanUpAndExit(-1);
				}
			}
			break;

5. Handle LoginSucceeded event
If the item’s user name is allowed to access DACS system, the processDacsLogin() callback method will be called. In this callback, the example will perform the subject base subscription check of the subscribed items. It the subscription is allowed, the example will call the sendItemRequest() method to send an item request to TREP or Elektron Edge device. Otherwise, the application will exit.
	void processDacsLogin(DacsClient* client)
{
	printf("::processDacsLoging()\n");
	bool result = false;

	printf("::Subscribe()\n");
	if(pDacsClient->checkSubSBE(serviceName, itemName))
	{
		isSubscribed = sendItemRequest(pReactor, pRsslReactorChannel, const_cast<char*>(itemName.c_str()), service.serviceId, domainType);
		printf("Send MMT_MARKET_PRICE Request\n");
	}else
	{
		printf("\n\n<-- SBE Checking Failed -->\n");
		cleanUpAndExit(-1);
	}

}

6. Handle LoginFailed event

If the item’s user name is not allowed to access DACS system, the processDacsLogout() method will be called. This method will call processAccessDeny() to perform cleanup and exit.

	void processDacsLogout(DacsClient* client)
{
	printf("::processDacsLogout()\n");
	processAccessDeny();
}

7. Get DACS lock and perform the content base subscription check

After sending the item request, if the item is valid, the example will retrieve the refresh message via the registered callback method. If the refresh message contains the permission information, the example will retrieve and store it. Then, it will use this permission information (DACS lock) to perform the content base subscription check.

If the subscription is allowed, the example will decode and display the data. Otherwise, it will call processAccessDeny() to perform cleanup and exit.

	RsslRet processRDMResponse(RsslReactorChannel *pReactorChannel, RsslMsg *msg, RsslDecodeIterator* dIter)
{
...

	printf("\nReceived activity on channel: %d\n\n", pReactorChannel->socketId);

	switch (msg->msgBase.msgClass)
	{
	case RSSL_MC_REFRESH:
		if (msg->refreshMsg.flags & RSSL_STMF_HAS_PERM_DATA)
		{
			if (checkSubCBE(msg->refreshMsg.permData) == 0)
			{
				processAccessDeny();
				return -1;
			}
		}

		/* Echo instrument we requested - usually on REFRESH */
		if (key && (key->flags & RSSL_MKF_HAS_NAME))
			printf("Item: %.*s\n", key->name.length, key->name.data);

		rsslStateToString(&tempBuffer, &msg->refreshMsg.state);
		printf("%.*s\n", tempBuffer.length, tempBuffer.data);

8. Handle Status message
The permission information can be changed via the status message. The example verifies if there is permission data in the status message and then call checkSubCBE() method. The method verifies if the permission data has been changed. It will update the stored DACS lock and perform the content base subscription check against the new permission data

		case RSSL_MC_STATUS:
		printf("\nReceive statusMsg for stream: %i\n", msg->statusMsg.msgBase.streamId);

		if (msg->statusMsg.flags & RSSL_STMF_HAS_STATE)
		{
			rsslStateToString(&tempBuffer, &msg->statusMsg.state);
			printf("	%.*s\n\n", tempBuffer.length, tempBuffer.data);
		}

		if (msg->statusMsg.flags & RSSL_STMF_HAS_PERM_DATA)
		{
			if (checkSubCBE(msg->statusMsg.permData) == 0)
			{
				processAccessDeny();
				return -1;
			}
		}

		break;

9. Handle DACS re-permission event
When the user permission profile has been changed, the callback processReperm() will be called. In this method, the example will perform subscribe checks for the subscribed item again. If the access is denied, the example will call processAccessDeny() to perform cleanup and exit.

	void processReperm(DacsClient* client)
{
	printf("::processReperm()\n");
	
	if (pDacsClient->checkSubSBE(serviceName, itemName) == false){
		printf("Failed reperm subject base entitlement for service: %s item: %s\n", serviceName.c_str(), itemName.c_str());
		processAccessDeny();
		return;
	}

	if (pDacsClient->checkSubCBE(serviceName, itemName, &_dacsLock, true) == false){
		printf("Failed reperm content base entitlement for service: %s item: %s\n", serviceName.c_str(), itemName.c_str());
		processAccessDeny();
		return;
	}
}

Build and run the example
The project file is provided for Visual Studio 2013. The example has been build and tested with UPA C 8.0.0, RFA C++ 8.0.1 and Open DACS C++ 7.6.0
To build the example, ExampleENV.reg must be modified. This file contains the environment variables which point to the APIs’ include and library paths.
	REGEDIT4

[HKEY_CURRENT_USER\Environment]
"OPENDACS_INCLUDE_PATH"="C:\\api\\rfacpp\\Include"
"RFA_INCLUDE_PATH"="C:\\api\\rfacpp\\Include"
"RFA_LIBRARY_PATH"="C:\\api\\rfacpp\\Libs"
"UPA_PATH"="C:\\api\\upa"

After modifying this file, double click on this file to add these environment variables into the Windows Register. Then, open basicConsumer4_upa8_VS120.vcxproj project file to build the example.
To run the example to connect to the local DACS Sink Daemon, please the following parameters:
· -s <service name> -i <item name> -h <host name or IP address> -appUser <user name for the example> -itemUser <user name of an item>
To run the example to connect to the remote DACS Sink Daemon, please the following parameters:
· -s <service name> -i <item name> -h <host name or IP address> -appUser <user name for the example> -itemUser <user name of an item> -d <host:port>
For example:
	C:\ upa-consumer-tutorials\tutorial4\Release_WIN_64_VS120>basicConsumer.exe -s API_ELEKTR
ON_EPD_RSSL -i TRI.N -h 192.168.27.46 -appUser api -itemUser demo
Username for Application = api
Username for Item = demo
Host name = 192.168.27.46
Port = 14002
Position = 1.0.0.0/net
Application ID = 256
Service Name = API_ELEKTRON_EPD_RSSL
Item Name = TRI.N
DACS Connection String = local

Successfully loaded local dictionaries

Connection up! Channel fd=404

Received Login response: State: Open/Ok/None - text: "Login accepted by host lithium."

Received Source Directory Response: State: Open/Ok/None - text: ""
 Received serviceName: API_ELEKTRON_EDGE_TOKYO. Service State: Up
 Received serviceName: API_ELEKTRON_EPD_RSSL. Service State: Up
 Found your service API_ELEKTRON_EPD_RSSL using serviceId: 2115
 Received serviceName: API_ELEKTRON_EDGE_BEIJ. Service State: Up
 Received serviceName: API_ELEKTRON_EDGE_DTC. Service State: Up

Channel is ready.

Initialize Open DACS components

*** Creating AuthorizationSystem and AuthorizationAgent ***
Performing login with the following credentials:
 User: demo
 Position: 1.0.0.0/net
 Application Id: 256

Received DACS Authorization Event...
User: demo [Position: 1.0.0.0/net | AppId: 256]

 State: LoggedIn
 Status Code: NoStatusCode
 Status Text: LoginResultPass: handle[1]

::processDacsLoging()
::Subscribe()

Performing SBE check with the following credentials:
 User: demo
 Service: API_ELEKTRON_EPD_RSSL
 Item: TRI.N

SBE check result...
 Status Code: accessAllowed Status Text: Access Allowed:
Send MMT_MARKET_PRICE Request

Received activity on channel: 404

ServiceID: 2115 PE List : 6562 Operator: OR
accessAllowed DACS Lock
Item: TRI.N
State: Open/Ok/None - text: "All is well"
Domain: RSSL_DMT_MARKET_PRICE
 PROD_PERM 6562
 RDNDISPLAY 64
 DSPLY_NAME THOMSON REUTERS
 RDN_EXCHID NYS(2)
 TRDPRC_1 41.4800
 TRDPRC_2 41.4700
 TRDPRC_3 41.4700
 TRDPRC_4 41.4700
 TRDPRC_5 41.4700
 NETCHNG_1 0.5900
 HIGH_1 41.6400
 LOW_1 41.0100
 PRCTCK_1 ▐(1)
 CURRENCY USD(840)
 TRADE_DATE 11 JUL 2016
 TRDTIM_1 20:02:00:000:000:000
 OPEN_PRC 41.0200
 HST_CLOSE 40.8900
 BID 41.4700
 BID_1 41.4700
 BID_2 41.4700
 ASK 41.4800
 ASK_1 41.4800
 ASK_2 41.4800

image1.emf
TREP DACS

Application

UPA C Open DACS

User1 User2

oleObject1.bin
TREP

DACS

Application

UPA C

Open DACS

User1

User2

