Im having trouble with missingquarter data for several American companies, including AAPL.

data retrieved with:
df_standard, err = ek.get_data(
instruments = ['AAPL.O'],
fields = ['TR.F.IncomeStatement.fieldname','TR.F.IncomeStatement','TR.F.IncomeStatement.date','TR.F.IncomeStatement.FCC'],
parameters = {'Scale': 6, 'SDate': 0, 'EDate': -30,'Period':'FQ0', 'FRQ': 'FQ','AlignType':'PrelimOrPeriodEndDate','ConsolBasis':'Consolidated'}
)
df_ASR, err = ek.get_data(
instruments = ['AAPL.O'],
fields = ['TR.F.ASRIncomeStatement.fieldname','TR.F.ASRIncomeStatement','TR.F.ASRIncomeStatement.date','TR.F.ASRIncomeStatement.FCC'],
parameters = {'Scale': 6, 'SDate': 0, 'EDate': -30,'Period':'FQ0', 'FRQ': 'FQ','AlignType':'PrelimOrPeriodEndDate','ConsolBasis':'Consolidated'}
)
"AAPL.O - Missing quarters detected: DatetimeIndex(['2015-12-31', '2017-12-31', '2018-12-31', '2019-12-31',
'2020-12-31', '2021-12-31', '2023-12-31'],
dtype='datetime64[ns]', freq=None)
INTC.O - Missing quarters detected: DatetimeIndex(['2015-12-31', '2017-12-31', '2018-12-31', '2019-12-31',
'2020-12-31', '2021-12-31', '2023-12-31'],
dtype='datetime64[ns]', freq=None)
JNJ - Missing quarters detected: DatetimeIndex(['2018-12-31', '2019-12-31'], dtype='datetime64[ns]', freq=None)
PEP.O - Missing quarters detected: DatetimeIndex(['2015-12-31', '2017-12-31', '2018-12-31', '2019-12-31',
'2020-12-31', '2021-12-31', '2023-12-31'],
dtype='datetime64[ns]', freq=None)
DIS - Missing quarters detected: DatetimeIndex(['2017-12-31', '2018-12-31', '2019-12-31', '2023-12-31'], dtype='datetime64[ns]', freq=None)
QCOM.O - Missing quarters detected: DatetimeIndex(['2015-12-31', '2016-12-31', '2017-12-31', '2018-12-31',
'2019-12-31', '2020-12-31', '2021-12-31', '2022-12-31',
'2023-12-31'],
dtype='datetime64[ns]', freq=None)
SBUX.O - Missing quarters detected: DatetimeIndex(['2015-12-31', '2018-12-31', '2019-12-31', '2020-12-31'], dtype='datetime64[ns]', freq=None)
KHC.O - Missing quarters detected: DatetimeIndex(['2017-12-31', '2018-12-31', '2019-12-31', '2020-12-31',
'2021-12-31', '2023-12-31'],
dtype='datetime64[ns]', freq=None)
COST.O - Missing quarters detected: DatetimeIndex(['2015-06-30', '2016-06-30', '2017-06-30', '2018-06-30',
'2019-06-30', '2020-06-30', '2021-06-30', '2022-06-30',
'2023-06-30', '2024-06-30'],
dtype='datetime64[ns]', freq=None)
HWM - Missing quarters detected: DatetimeIndex(['2016-12-31'], dtype='datetime64[ns]', freq='Q-DEC')
YUM - Missing quarters detected: DatetimeIndex(['2015-12-31'], dtype='datetime64[ns]', freq='Q-DEC')
VFC - Missing quarters detected: DatetimeIndex(['2017-12-31', '2018-12-31', '2019-12-31', '2020-12-31',
'2023-12-31'],
dtype='datetime64[ns]', freq=None)
TSN - Missing quarters detected: DatetimeIndex(['2017-12-31', '2018-12-31', '2019-12-31', '2023-12-31'], dtype='datetime64[ns]', freq=None)
TPR - Missing quarters detected: DatetimeIndex(['2015-12-31', '2017-12-31', '2018-12-31', '2019-12-31',
'2020-12-31', '2023-12-31'],
dtype='datetime64[ns]', freq=None)
CSX.O - Missing quarters detected: DatetimeIndex(['2015-12-31', '2016-12-31'], dtype='datetime64[ns]', freq=None)
CRI - Missing quarters detected: DatetimeIndex(['2017-12-31', '2018-12-31', '2019-12-31', '2023-12-31'], dtype='datetime64[ns]', freq=None)
CPRI.K - Missing quarters detected: DatetimeIndex(['2015-12-31', '2017-12-31', '2018-12-31', '2019-12-31',
'2020-12-31', '2021-12-31', '2023-12-31'],
dtype='datetime64[ns]', freq=None)
AZO - Missing quarters detected: DatetimeIndex(['2015-06-30', '2016-06-30', '2017-06-30', '2018-06-30',
'2019-06-30', '2020-06-30', '2021-06-30', '2022-06-30',
'2023-06-30', '2024-06-30']"
Answers
-
there is also missing data for: STMPA.PA, RIO,LM DGE.L
0 -
Thank you for reaching out to us.
As this forum is more for programming type queries, rather than content queries - I would recommend you raise a 'I need help understanding content within the product' ticket with our helpdesk. That way a Content specialist can work closely with you and verify the content.
0 -
could you specify which subject please?
0 -
The results from the ek.get_data method is similar to the results from Eikon Excel and Workspace Excel.
You can contact the Eikon or Workspace support team to verify the content.
1
Categories
- All Categories
- 6 AHS
- 36 Alpha
- 166 App Studio
- 6 Block Chain
- 4 Bot Platform
- 18 Connected Risk APIs
- 47 Data Fusion
- 34 Data Model Discovery
- 683 Datastream
- 1.4K DSS
- 613 Eikon COM
- 5.2K Eikon Data APIs
- 10 Electronic Trading
- Generic FIX
- 7 Local Bank Node API
- 3 Trading API
- 2.9K Elektron
- 1.4K EMA
- 248 ETA
- 552 WebSocket API
- 37 FX Venues
- 14 FX Market Data
- 1 FX Post Trade
- 1 FX Trading - Matching
- 12 FX Trading – RFQ Maker
- 5 Intelligent Tagging
- 2 Legal One
- 23 Messenger Bot
- 3 Messenger Side by Side
- 9 ONESOURCE
- 7 Indirect Tax
- 60 Open Calais
- 275 Open PermID
- 44 Entity Search
- 2 Org ID
- 1 PAM
- PAM - Logging
- 6 Product Insight
- Project Tracking
- ProView
- ProView Internal
- 22 RDMS
- 1.9K Refinitiv Data Platform
- 626 Refinitiv Data Platform Libraries
- 5 LSEG Due Diligence
- 1 LSEG Due Diligence Portal API
- 4 Refinitiv Due Dilligence Centre
- Rose's Space
- 1.2K Screening
- 18 Qual-ID API
- 13 Screening Deployed
- 23 Screening Online
- 12 World-Check Customer Risk Screener
- 1K World-Check One
- 46 World-Check One Zero Footprint
- 45 Side by Side Integration API
- 2 Test Space
- 3 Thomson One Smart
- 10 TR Knowledge Graph
- 151 Transactions
- 143 REDI API
- 1.8K TREP APIs
- 4 CAT
- 26 DACS Station
- 121 Open DACS
- 1.1K RFA
- 104 UPA
- 191 TREP Infrastructure
- 228 TRKD
- 915 TRTH
- 5 Velocity Analytics
- 9 Wealth Management Web Services
- 84 Workspace SDK
- 11 Element Framework
- 5 Grid
- 18 World-Check Data File
- 1 Yield Book Analytics
- 46 中文论坛