Which fields to use in get_data that correspond to OPEN, HIGH, LOW, CLOSE, VOLUME in get_timeseries?

Is it possible to get the same data from get_timeseries with get_data or does it use a different back end all together?
Best Answer
-
It is better to select fields in the same category. In this case, it could be Time Series Data.
data, err = ek.get_data(
instruments=['AKERBP.OL'],
fields=['TR.OPENPRICE.date', 'TR.HIGHPRICE', 'TR.LOWPRICE', 'TR.OPENPRICE', 'TR.CLOSEPRICE', 'TR.ACCUMULATEDVOLUME'],
parameters={
'SDate': '2008-05-01',
'EDate': '2008-06-01'})
data0
Answers
-
hi @jokari69 ,
I believe that you can recreate the get_timeseries fields with get_data. To find the corresponding fields, please use the Data Item Browser.
As a quick example:
data, err = ek.get_data(
instruments=['VOD.L'],
fields=['TR.HIGHPRICE.date', 'TR.HIGHPRICE', 'TR.LOWPRICE', 'TR.OPENPRICE', 'TR.PriceClose', 'TR.Volume'],
parameters={
'SDate': '2021-09-18',
'EDate': '2021-09-29',
'Frq': 'D'})0 -
The mixed usage of all caps prices fields and camelcase price fields will lead to strange behaviour.
As per TR.PriceClose definition it will return the last known value for this field on each day. This makes it return old data for empty business days. On the other hand the all caps prices like TR.CLOSEPRICE, TR.OPENPRICE, TR.HIGHPRICE, TR.LOWPRICE will only give data for their respective days and return nothing or nan for other days. The difference in behaviour can be clearly seen for a RIC like (AKERBP.OL) where this is prevalent.
For clarity I added the CLOSEPRICE field as well a date field TR.PriceClose.date.
You can see that the data looks join on index for two different tables. One from the all caps columns and date & 1 from the camelcase columns and date.
It would be nice that some database export from Refinitiv gives some guidance on how to use these data sources properly as it seems pretty dangerous to mingle these fields.
data, err = ek.get_data(
instruments=['AKERBP.OL'],
fields=['TR.OPENPRICE.date', 'TR.HIGHPRICE', 'TR.LOWPRICE', 'TR.OPENPRICE', 'TR.CLOSEPRICE', 'TR.PriceClose.date', 'TR.PriceClose', 'TR.Volume'],
parameters={
'SDate': '2008-05-01',
'EDate': '2008-06-01'}0
Categories
- All Categories
- 3 Polls
- 6 AHS
- 36 Alpha
- 166 App Studio
- 6 Block Chain
- 4 Bot Platform
- 18 Connected Risk APIs
- 47 Data Fusion
- 34 Data Model Discovery
- 684 Datastream
- 1.4K DSS
- 615 Eikon COM
- 5.2K Eikon Data APIs
- 10 Electronic Trading
- Generic FIX
- 7 Local Bank Node API
- 3 Trading API
- 2.9K Elektron
- 1.4K EMA
- 250 ETA
- 555 WebSocket API
- 37 FX Venues
- 14 FX Market Data
- 1 FX Post Trade
- 1 FX Trading - Matching
- 12 FX Trading – RFQ Maker
- 5 Intelligent Tagging
- 2 Legal One
- 23 Messenger Bot
- 3 Messenger Side by Side
- 9 ONESOURCE
- 7 Indirect Tax
- 60 Open Calais
- 275 Open PermID
- 44 Entity Search
- 2 Org ID
- 1 PAM
- PAM - Logging
- 6 Product Insight
- Project Tracking
- ProView
- ProView Internal
- 22 RDMS
- 1.9K Refinitiv Data Platform
- 643 Refinitiv Data Platform Libraries
- 4 LSEG Due Diligence
- LSEG Due Diligence Portal API
- 4 Refinitiv Due Dilligence Centre
- Rose's Space
- 1.2K Screening
- 18 Qual-ID API
- 13 Screening Deployed
- 23 Screening Online
- 12 World-Check Customer Risk Screener
- 1K World-Check One
- 46 World-Check One Zero Footprint
- 45 Side by Side Integration API
- 2 Test Space
- 3 Thomson One Smart
- 10 TR Knowledge Graph
- 151 Transactions
- 143 REDI API
- 1.8K TREP APIs
- 4 CAT
- 27 DACS Station
- 121 Open DACS
- 1.1K RFA
- 104 UPA
- 193 TREP Infrastructure
- 228 TRKD
- 915 TRTH
- 5 Velocity Analytics
- 9 Wealth Management Web Services
- 90 Workspace SDK
- 11 Element Framework
- 5 Grid
- 18 World-Check Data File
- 1 Yield Book Analytics
- 46 中文论坛