I want to get data using python API for multiple fields and RICs for a time period

The output that the get_history function returns is not in the best format. The first column contains dates, the first row contains RICs, and the second row contains fields. I want to have the data in the following format: the first column should contain dates, the second column should contain RICs, and the other columns should contain the field values corresponding to the date and RIC for each observation. How can I format it this way in Python? Additionally, there is another problem: the get_history function sometimes returns multiple rows for the same date and RIC, with some field values displayed in the first row and some field values displayed in the second row. I don't know whether this is a bug or a feature. The output format I'd like to have is in the picture.
Best Answer
-
Hi @vsafak ,
The dataframe can be formatted with Python code, for example
df = rd.get_history(universe=["SPYQ202454000.U^E24", "SPYQ202453900.U^E24"], fields= ['TR.OPENPRICE', 'TR.HIGHPRICE', 'TR.LOWPRICE', 'TR.CLOSEPRICE', 'TR.OPENINTEREST', 'TR.IMPLIEDVOLATILITY','TR.DELTA','TR.THETA','TR.GAMMA','TR.VEGA','TR.RHO'],
interval="1d",
start="2024-01-01",
end="2024-06-01")
format_df = pd.DataFrame()
idx = pd.IndexSlice
first_loop = True
for ric in rics:
# get the dataframe of each RIC in the RICs list
temp_df = df.loc[:,idx[ric,:]]
temp_df.columns = temp_df.columns.droplevel()
temp_df.reset_index(inplace=True)
temp_df['RIC'] = ric
# put this value in the format_df dataframe
if first_loop:
format_df = temp_df
first_loop = False
else:
format_df = format_df.append(temp_df)
display(format_df)0
Answers
-
@vsafak
Please share the code that you are using to retrieve the data.
0 -
df = rd.get_history(universe=["SPYQ202454000.U^E24", "SPYQ202453900.U^E24"], fields= ['TR.OPENPRICE', 'TR.HIGHPRICE', 'TR.LOWPRICE', 'TR.CLOSEPRICE', 'TR.OPENINTEREST', 'TR.IMPLIEDVOLATILITY','TR.DELTA','TR.THETA','TR.GAMMA','TR.VEGA','TR.RHO'],
interval="1d",
start="2024-01-01",
end="2024-06-01")
0 -
Thanks. For those who are using pandas 2.0 or above, .append was replaced by ._append. After this minor modification, the code above works.
0
Categories
- All Categories
- 3 Polls
- 6 AHS
- 36 Alpha
- 166 App Studio
- 6 Block Chain
- 4 Bot Platform
- 18 Connected Risk APIs
- 47 Data Fusion
- 34 Data Model Discovery
- 685 Datastream
- 1.4K DSS
- 616 Eikon COM
- 5.2K Eikon Data APIs
- 10 Electronic Trading
- Generic FIX
- 7 Local Bank Node API
- 3 Trading API
- 2.9K Elektron
- 1.4K EMA
- 252 ETA
- 557 WebSocket API
- 38 FX Venues
- 14 FX Market Data
- 1 FX Post Trade
- 1 FX Trading - Matching
- 12 FX Trading – RFQ Maker
- 5 Intelligent Tagging
- 2 Legal One
- 23 Messenger Bot
- 3 Messenger Side by Side
- 9 ONESOURCE
- 7 Indirect Tax
- 60 Open Calais
- 275 Open PermID
- 44 Entity Search
- 2 Org ID
- 1 PAM
- PAM - Logging
- 6 Product Insight
- Project Tracking
- ProView
- ProView Internal
- 22 RDMS
- 1.9K Refinitiv Data Platform
- 653 Refinitiv Data Platform Libraries
- 4 LSEG Due Diligence
- LSEG Due Diligence Portal API
- 4 Refinitiv Due Dilligence Centre
- Rose's Space
- 1.2K Screening
- 18 Qual-ID API
- 13 Screening Deployed
- 23 Screening Online
- 12 World-Check Customer Risk Screener
- 1K World-Check One
- 46 World-Check One Zero Footprint
- 45 Side by Side Integration API
- 2 Test Space
- 3 Thomson One Smart
- 10 TR Knowledge Graph
- 151 Transactions
- 143 REDI API
- 1.8K TREP APIs
- 4 CAT
- 27 DACS Station
- 121 Open DACS
- 1.1K RFA
- 104 UPA
- 193 TREP Infrastructure
- 229 TRKD
- 917 TRTH
- 5 Velocity Analytics
- 9 Wealth Management Web Services
- 90 Workspace SDK
- 11 Element Framework
- 5 Grid
- 18 World-Check Data File
- 1 Yield Book Analytics
- 46 中文论坛