Codebook to download in excel loans data from the screener

am trying to use the codebook to download in excel loans data from the screener.
I am using the following code:
import refinitiv.data as rd
from refinitiv.data.discovery import Screener
rd.open_session()
loans = Screener('U(IN(DEALS)/*UNV:DEALSLOAN*/), BETWEEN(TR.LNTrancheClosingDate,20240301,20240302)/*dt:Date*/, CURN=USD')
df = rd.get_data(loans, ['TR.LNIssuer', 'TR.LNTrancheAmount(Scale=6)'])
display(df)
But I get this error: RDError: Error code -1 | Unable to resolve all requested identifiers in ['154088357172', '154088382574', '154088384091', '154088391130', '154088392090', '154088393484', '154088393962', '154088393963', '154088394857', '154088395505', '154088395534', '154088395535', '154088403027', '154088403179', '154088403194', '154088403195', '154088403229', '154088403230', '154088403232', '154088403234', '154088403240', '154088403241', '154088403244', '154088403247', '154088403248', '154088403249', '154088403250', '154088403252', '154088403253', '154088405286', '154088405392', '154088405393', '154088405394', '154088405436', '154088405440', '154088405476', '154088406105', '154088406243', '154088406449', '154088406685', '154088407456', '154088408113', '154088408302', '154088408303', '154088408304', '154088409386', '154088409893', '154088410085', '154088410097', '154088410614', '154088410616', '154088411466', '154088411467', '154088412072', '154088412073', '154088412680', '154088412799', '154088412974', '154088413014', '154088413017', '154088413049', '154088413063', '154088413072', '154088414115', '154088414277', '154088414278', '154088414279', '154088414423', '154088415762', '154088415763', '154088415811', '154088416062', '154088416063', '154088416094', '154088416105', '154088417163', '154088417207', '154088417208', '154088417293', '154088417413', '154088417414', '154088417432', '154088417497', '154088417725', '154088422652', '154088422826', '154088422827', '154088422893', '154088423040', '154088423216', '154088423228', '154088423478', '154088423479', '154088425420', '154088425526', '154088426314', '154088426315', '154088426316', '154088427153', '154088429469', '154088429475', '154088430429', '154088430430', '154088432385', '154088434703', '154088434704', '154088437378', '154088437379', '154088441148', '154088441149', '154088441524', '154088442425', '154088442426', '154088446625', '154088455588', '154088455589', '154088455590', '154088460731', '154088460732', '154088460733', '154088462317', '154088464077', '154088467885', '154088468538', '154088469882', '154088469883', '154088478196', '154088479370', '154088479886', '154088483647', '154088483648', '154088488700', '154088493728', '154088493729', '154088493730', '154088495717', '154088515984', '154088533116', '154088533133', '154088533639', '154088535515', '154088537317', '154088558382', '154088606682', '154088659535', '154088659548', '154088675380', '154088745522', '154088758290', '154088758291', '154088758292'].
Could you help me understand what I am doing wrong?
Answers
-
Thank you for reaching out to us.
It could be like this:
df= rd.get_data( universe=['SCREEN(U(IN(DEALS)/*UNV:DEALSLOAN*/), BETWEEN(TR.LNTrancheClosingDate,20240301,20240302)/*dt:Date*/, CURN=USD)'], fields=['TR.LNIssuer', 'TR.LNTrancheAmount(Scale=6)'], parameters = {'Curn': 'USD'}) df
0
Categories
- All Categories
- 3 Polls
- 6 AHS
- 36 Alpha
- 166 App Studio
- 6 Block Chain
- 4 Bot Platform
- 18 Connected Risk APIs
- 47 Data Fusion
- 34 Data Model Discovery
- 685 Datastream
- 1.4K DSS
- 615 Eikon COM
- 5.2K Eikon Data APIs
- 10 Electronic Trading
- Generic FIX
- 7 Local Bank Node API
- 3 Trading API
- 2.9K Elektron
- 1.4K EMA
- 252 ETA
- 556 WebSocket API
- 38 FX Venues
- 14 FX Market Data
- 1 FX Post Trade
- 1 FX Trading - Matching
- 12 FX Trading – RFQ Maker
- 5 Intelligent Tagging
- 2 Legal One
- 23 Messenger Bot
- 3 Messenger Side by Side
- 9 ONESOURCE
- 7 Indirect Tax
- 60 Open Calais
- 275 Open PermID
- 44 Entity Search
- 2 Org ID
- 1 PAM
- PAM - Logging
- 6 Product Insight
- Project Tracking
- ProView
- ProView Internal
- 22 RDMS
- 1.9K Refinitiv Data Platform
- 652 Refinitiv Data Platform Libraries
- 4 LSEG Due Diligence
- LSEG Due Diligence Portal API
- 4 Refinitiv Due Dilligence Centre
- Rose's Space
- 1.2K Screening
- 18 Qual-ID API
- 13 Screening Deployed
- 23 Screening Online
- 12 World-Check Customer Risk Screener
- 1K World-Check One
- 46 World-Check One Zero Footprint
- 45 Side by Side Integration API
- 2 Test Space
- 3 Thomson One Smart
- 10 TR Knowledge Graph
- 151 Transactions
- 143 REDI API
- 1.8K TREP APIs
- 4 CAT
- 27 DACS Station
- 121 Open DACS
- 1.1K RFA
- 104 UPA
- 193 TREP Infrastructure
- 228 TRKD
- 917 TRTH
- 5 Velocity Analytics
- 9 Wealth Management Web Services
- 90 Workspace SDK
- 11 Element Framework
- 5 Grid
- 18 World-Check Data File
- 1 Yield Book Analytics
- 46 中文论坛