How to retrieve peers multiple mean/median for a list of companies at given date

I have a csv file containing the list of RICs and specific date for each RIC, like this:
I want to retrieve the mean and median multiple (P/E, EV/EBITDA) for each company at its specific date, and I've written the following code:
df=pd.read_csv(loc)
dataset=[]
df2=df["ticker"].values.tolist()
df3=df["date"].values.tolist()
for x in range(0,1):
keyword=df2[x]
date=df3[x]
data,err = ek.get_data('Peers("keyword")', ["TR.EVToEBITDA", "TR.PE"],{'SDate':date})
dataset.append(data)
the code is not working, especially the Peers("keyword") is treated as a string and Peers function doesn't work. I am wondering how can I modify my code to reach my goal.
Best Answer
-
The date format is incorrect. The correct format is 2014-01-09.
Therefore, the code should be:
df=pd.read_csv(loc)
dataset=[]
df2=df["ticker"].values.tolist()
df3=df["date"].values.tolist()
for x in range(0,1):
keyword=df2[x]
date=df3[x]
print(keyword, date)
data,err = ek.get_data('Peers({})'.format(keyword), ["TR.EVToEBITDA", "TR.PE"],{'SDate':date.replace('/','-')})0
Answers
-
I have run this code:
data,err = ek.get_data('Peers("1353.HK")', ["TR.EVToEBITDA","TR.PE"], {'SDate':'2014-01-09'})
dataThe output is:
From the result, the Peers function works fine.
0 -
Thank you! but I have a list of over 600 stocks and manually changing instrument and date takes too much time. is there a way that I can use for loop or other to do that?
0 -
Hi @zxiaoah
https://www.w3schools.com/python/python_for_loops.asp
You can consider using loop in Python.
So you would have a list of RIC and Date in each loop and do the API call.
0 -
Thanks! I tried to use loop in my original code (shown above) but the "keyword" is always intrepreted as a string instead of the RIC I want. Could you give me some hints on how to modify my code?
0 -
0
-
Hi, I want to know if I can calculate the mean or median of the multiple of peers for a certain company within each loop? so that I can return a data frame with peer mean/median for each RIC.
0
Categories
- All Categories
- 3 Polls
- 6 AHS
- 36 Alpha
- 166 App Studio
- 6 Block Chain
- 4 Bot Platform
- 18 Connected Risk APIs
- 47 Data Fusion
- 34 Data Model Discovery
- 684 Datastream
- 1.4K DSS
- 615 Eikon COM
- 5.2K Eikon Data APIs
- 10 Electronic Trading
- Generic FIX
- 7 Local Bank Node API
- 3 Trading API
- 2.9K Elektron
- 1.4K EMA
- 249 ETA
- 554 WebSocket API
- 37 FX Venues
- 14 FX Market Data
- 1 FX Post Trade
- 1 FX Trading - Matching
- 12 FX Trading – RFQ Maker
- 5 Intelligent Tagging
- 2 Legal One
- 23 Messenger Bot
- 3 Messenger Side by Side
- 9 ONESOURCE
- 7 Indirect Tax
- 60 Open Calais
- 275 Open PermID
- 44 Entity Search
- 2 Org ID
- 1 PAM
- PAM - Logging
- 6 Product Insight
- Project Tracking
- ProView
- ProView Internal
- 22 RDMS
- 1.9K Refinitiv Data Platform
- 643 Refinitiv Data Platform Libraries
- 4 LSEG Due Diligence
- LSEG Due Diligence Portal API
- 4 Refinitiv Due Dilligence Centre
- Rose's Space
- 1.2K Screening
- 18 Qual-ID API
- 13 Screening Deployed
- 23 Screening Online
- 12 World-Check Customer Risk Screener
- 1K World-Check One
- 46 World-Check One Zero Footprint
- 45 Side by Side Integration API
- 2 Test Space
- 3 Thomson One Smart
- 10 TR Knowledge Graph
- 151 Transactions
- 143 REDI API
- 1.8K TREP APIs
- 4 CAT
- 26 DACS Station
- 121 Open DACS
- 1.1K RFA
- 104 UPA
- 192 TREP Infrastructure
- 228 TRKD
- 915 TRTH
- 5 Velocity Analytics
- 9 Wealth Management Web Services
- 90 Workspace SDK
- 11 Element Framework
- 5 Grid
- 18 World-Check Data File
- 1 Yield Book Analytics
- 46 中文论坛