Hello I'm not sure if I'm a hitting some sort of API Limit in EIKON when running my for loop for ...

...each 'RIC' needed using python.

here is my original for loop that i am limiting to only 50 Rics and still not getting the correct data set.

API_Key = ek.set_app_key('hidden')

fields=['Timestamp','Value']

start1 = (date.today()-timedelta(days=20*365)).strftime('2020-01-01')

end1 = date.today().strftime('%Y-%m-%d')


rng = pd.date_range(start= start1 ,end=end1 ,freq='D')

Calendar= pd.DataFrame({ 'Date': rng})

TR1_50_Rics=["TD-ABM-CPT","TD-ABM-DUR","TD-ABM-HOU","TD-ABM-INC","TD-ABM-JGA","TD-ABM-LAV","TD-ABM-LIT","TD-ABM-PHL","TD-ABM-RDM","TD-ABM-SIN","TD-ABM-FAW","TD-ABM-FAW2","TD-ABM-FAW3","TD-ABM-LIV","TD-ABM-LIV2","TD-ABM-LIV3","TD-ABM-RDM2","TD-ABM-RDM3","TD-ABM-VNT","TD-ABM-VNT2","TD-ABM-VNT3","TD-ABM-TLL","TD-ABM-TLL2","TD-ABM-TLL3","TD-ABM-BRB","TD-ABM-AUG","TD-ABM-AUG2","TD-ABM-AUG3","TD-ABM-LAV2","TD-ABM-CHI","TD-ABM-CHI2","TD-ABM-CHI3","TD-ABM-KIK","TD-ABM-KIK2","TD-ABM-KIK3","TD-ABM-YPG","TD-ABM-YPG2","TD-ABM-YPG3","TD-ABM-NGB","TD-ABM-NGB2","TD-ABM-NGB3","TD-ABM-TNJ","TD-ABM-TNJ2","TD-ABM-TNJ3","TD-ABM-SIN2","TD-ABM-SIN3","TD-ABM-SRI","TD-ABM-SRI2","TD-ABM-SRI3","TD-ABM-MTP"]


Transport_df_1 = []

for TR1_50_Ric in TR1_50_Rics:

Temp_Prod_df_1 = ek.get_timeseries(TR1_50_Rics,

fields,

start1,

end1,

normalize=True)

Temp_Prod_df_1= Calendar.merge(Temp_Prod_df_1,on='Date',how='left')

Temp_Prod_df_1['Weekday'] = Temp_Prod_df_1.apply(lambda x :x.Date.weekday(), axis=1)

Temp_Prod_df_1= Temp_Prod_df_1.rename(columns={'Security' : 'EIKON_RIC','Value' : 'Close'})

Temp_Prod_df_1 = Temp_Prod_df_1[['Date', 'EIKON_RIC','Close','Weekday']]

Temp_Prod_df_1['Close'] = Temp_Prod_df_1.Close[Temp_Prod_df_1.Weekday <= 5].fillna(method='pad')

Temp_Prod_df_1['Close'] = Temp_Prod_df_1.Close[~Temp_Prod_df_1.Weekday <= 5].fillna(method='bfill')

Temp_Prod_df_1['EIKON_RIC'] = Temp_Prod_df_1.EIKON_RIC[Temp_Prod_df_1.Weekday <= 5].fillna(method='pad')

Temp_Prod_df_1['EIKON_RIC'] = Temp_Prod_df_1.EIKON_RIC[~Temp_Prod_df_1.Weekday <= 5].fillna(method='bfill')

Transport_df_1.append(Temp_Prod_df_1)

Final_Transport_df = pd.concat(Transport_df_1)

Final_Transport_df= Final_Transport_df[['Date', 'EIKON_RIC','Close']]

Final_Transport_df=Final_Transport_df.drop_duplicates().dropna()

Here is my test to see if the data is coming back correctly.

xx = ek.get_timeseries(["TD-ABM-CPT","TD-ABM-DUR","TD-ABM-HOU","TD-ABM-INC","TD-ABM-JGA","TD-RDM2-SIN"],

fields,

start1,

end1,

normalize=True)


Thank you.


Tagged:

Best Answer

  • Jirapongse
    Jirapongse ✭✭✭✭✭
    Answer ✓

    @daniel.burns

    From the code, you need to use TR1_50_RIC instead of TR1_50_Rics when calling the get_timeseries method.

    Transport_df_1 = []

    for TR1_50_Ric in TR1_50_Rics:
        Temp_Prod_df_1 = ek.get_timeseries(TR1_50_Ric, fields, start1, end1, normalize=True)
    ...
       

Answers

  • @daniel.burns This is returning for me fine:

    fields=['Timestamp','Value']
    start1 = datetime(2020,1,1).strftime('%Y-%m-%d')
    end1 = datetime.today().strftime('%Y-%m-%d')


    xx = ek.get_timeseries(['TD-ABM-CPT','TD-ABM-DUR','TD-ABM-HOU','TD-ABM-INC','TD-ABM-JGA','TD-RDM2-SIN'],fields,start1,end1,normalize=True)
    xx

    Are you able to run this code and get the same result?

    Screenshot 2021-10-01 at 16.57.21.png

  • Yes i am getting the same results...but the problem is happening in my for loop. the screen shot you shared was my testing the results of my for loop

Welcome!

It looks like you're new here. Sign in or register to get started.

Welcome!

It looks like you're new here. Sign in or register to get started.