get_timeseries - Historical fields inconsistencies (interval = TAS)

Hello all,
I have the following code returning either 27 or 52 fields depending on the end date.
(the difference lies in line 2, startdate definition)
Scenario 1: 52 fields returned
endDate = datetime.datetime(year=2020,month=3,day=10)
startDate=datetime.datetime(year=2020,month=3,day=4)
tickreq = ek.get_timeseries('BNPP.PA', fields='*', start_date=startDate, end_date=endDate, interval='tas', calendar=None, corax=None, normalize=False, raw_output=True, debug=False)
#--------------Fields and data extraction from raw data
lfields=[]
for i in tickreq['timeseriesData'][0]['fields']:
lfields.append(i['name'])
tickdf=pd.DataFrame(tickreq['timeseriesData'][0]['dataPoints'], columns =lfields)
Scenario 2: 27 fields returned
endDate = datetime.datetime(year=2020,month=3,day=10)
startDate=datetime.datetime(year=2020,month=3,day=8)
tickreq = ek.get_timeseries('BNPP.PA', fields='*', start_date=startDate, end_date=endDate, interval='tas', calendar=None, corax=None, normalize=False, raw_output=True, debug=False)
#--------------Fields and data extraction from raw data
lfields=[]
for i in tickreq['timeseriesData'][0]['fields']:
lfields.append(i['name'])
tickdf=pd.DataFrame(tickreq['timeseriesData'][0]['dataPoints'], columns =lfields)
I understand 08032020 is a sunday, so no trades to be found in theory, but I would still expect to get the same data structure, as I'am asking for all fields.
Is this normal behaviour?
Thank you for your help
Answers
-
Hello @MF
I run the same test, the structure appears to be the same, some fields may not be populated?
0 -
Hello Zoya,
thank you for your answer,
I rerun the test and still have a difference:
I am even more confused now as we run pretty much the same code but get different results...
0 -
Hello Zoya,
The problem is consistent as I can replicate it on my side for the same date,
I could no replicate it for the same stock at another date,
I can replicate it for another stock (SOGN.PA) for the same starting date: 08/03/2020
0
Categories
- All Categories
- 6 AHS
- 36 Alpha
- 166 App Studio
- 6 Block Chain
- 4 Bot Platform
- 18 Connected Risk APIs
- 47 Data Fusion
- 34 Data Model Discovery
- 683 Datastream
- 1.4K DSS
- 613 Eikon COM
- 5.2K Eikon Data APIs
- 10 Electronic Trading
- Generic FIX
- 7 Local Bank Node API
- 3 Trading API
- 2.9K Elektron
- 1.4K EMA
- 248 ETA
- 552 WebSocket API
- 37 FX Venues
- 14 FX Market Data
- 1 FX Post Trade
- 1 FX Trading - Matching
- 12 FX Trading – RFQ Maker
- 5 Intelligent Tagging
- 2 Legal One
- 23 Messenger Bot
- 3 Messenger Side by Side
- 9 ONESOURCE
- 7 Indirect Tax
- 60 Open Calais
- 275 Open PermID
- 44 Entity Search
- 2 Org ID
- 1 PAM
- PAM - Logging
- 6 Product Insight
- Project Tracking
- ProView
- ProView Internal
- 22 RDMS
- 1.9K Refinitiv Data Platform
- 626 Refinitiv Data Platform Libraries
- 5 LSEG Due Diligence
- 1 LSEG Due Diligence Portal API
- 4 Refinitiv Due Dilligence Centre
- Rose's Space
- 1.2K Screening
- 18 Qual-ID API
- 13 Screening Deployed
- 23 Screening Online
- 12 World-Check Customer Risk Screener
- 1K World-Check One
- 46 World-Check One Zero Footprint
- 45 Side by Side Integration API
- 2 Test Space
- 3 Thomson One Smart
- 10 TR Knowledge Graph
- 151 Transactions
- 143 REDI API
- 1.8K TREP APIs
- 4 CAT
- 26 DACS Station
- 121 Open DACS
- 1.1K RFA
- 104 UPA
- 191 TREP Infrastructure
- 228 TRKD
- 915 TRTH
- 5 Velocity Analytics
- 9 Wealth Management Web Services
- 84 Workspace SDK
- 11 Element Framework
- 5 Grid
- 18 World-Check Data File
- 1 Yield Book Analytics
- 46 中文论坛