EOD price history limit in Eikon Python API
hi there,
I am trying to retrieve end of day OHLCV for some ETF instrument (XLV) from 01/01/2000 till today via the EIKON Python API. Unfortunately, i can only retrieve data up to 19/06/2018, which is not even 2 years?
I would like to understand why the history is limit to such a short period whereas the Excel API and the Eikon chart allow me to retrieve data up to the desired start date.
Here is the call below where ric='XLV', start_date='20000101', end_date='20200427'. Thank you
fields=["OPEN", "HIGH", "LOW", "CLOSE", "VOLUME"]
df = ek.get_timeseries(ric,
fields=fields,
calendar="tradingdays",
start_date=start_date,
end_date=end_date,
interval='daily')
Best Answer
-
I have run the same code and it returns 3000 data points from 2008-05-27 to 2020-04-24. 3,000 data points are the current limit for the get_timeseries interday intervals, as mentioned in the EIKON DATA API USAGE AND LIMITS GUIDELINE.
0
Answers
-
Please review API limitation at https://developers.refinitiv.com/eikon-apis/eikon-data-api/docs?content=49692&type=documentation_item
Basically you reached the maximum number of records in a single API call. (3000 rows)
You should split the API call into multiple smaller periods.0 -
Hi @Mehdi_deprecated_0 - you can use the following code to return you a timeseries for as long dates as possible. It currently only works for a single RIC per time but you can loop across a list of RICS and use this and then concatenate to form larger frames. First we need to import some packages:
import eikon as ek
import pandas as pd
import numpy as np
from dateutil import parser
from datetime import timedelta
from datetime import datetime
import math
import time
ek.set_app_key('YOUR API KEY HERE')Next we need a date_range helper function:
def date_range(start, end, intv):
start = datetime.strptime(start,"%Y-%m-%d")
end = datetime.strptime(end,"%Y-%m-%d")
diff = (end - start ) / intv
for i in range(intv):
yield (start + diff * i).strftime("%Y-%m-%d")
yield end.strftime("%Y-%m-%d")Finally we create our new get_daily function (you can of course use other intervals etc). Here we are using a looped get_timeseries call which increments in chunks of 3000 rows - which as you have seen from the answers above is the current per call limit. I have also added a small sleep in there to avoid throttling limits.
def get_daily(rics,fields,start,end):
for ric in rics:
interval = math.ceil((parser.parse(end) - parser.parse(start)).days / 3000)
l = list(date_range(start,end,interval))
df1 = pd.DataFrame()
df = pd.DataFrame()
for i in range(interval):
ts = ek.get_timeseries(rics=ric,fields=fields, start_date=l[0+i],end_date=l[1+i], interval='daily')
df = df.append(ts)
time.sleep(0.4)
return dfthen you can just call the get_daily function with a larger date range and hey presto it all works beautifully:
rics = ['.GDAXI'] # Just for one ric at the moment I will extend this for multi-ric
fields = ['OPEN', 'HIGH', 'LOW', 'CLOSE']
start = '1990-06-04'
end = '2018-06-04'
df = get_daily(rics,fields,start,end)
dfI hope you can find this of use.
0
Categories
- All Categories
- 6 AHS
- 36 Alpha
- 166 App Studio
- 6 Block Chain
- 4 Bot Platform
- 18 Connected Risk APIs
- 47 Data Fusion
- 34 Data Model Discovery
- 684 Datastream
- 1.4K DSS
- 613 Eikon COM
- 5.2K Eikon Data APIs
- 10 Electronic Trading
- Generic FIX
- 7 Local Bank Node API
- 3 Trading API
- 2.9K Elektron
- 1.4K EMA
- 248 ETA
- 552 WebSocket API
- 37 FX Venues
- 14 FX Market Data
- 1 FX Post Trade
- 1 FX Trading - Matching
- 12 FX Trading – RFQ Maker
- 5 Intelligent Tagging
- 2 Legal One
- 23 Messenger Bot
- 3 Messenger Side by Side
- 9 ONESOURCE
- 7 Indirect Tax
- 60 Open Calais
- 275 Open PermID
- 44 Entity Search
- 2 Org ID
- 1 PAM
- PAM - Logging
- 6 Product Insight
- Project Tracking
- ProView
- ProView Internal
- 22 RDMS
- 1.9K Refinitiv Data Platform
- 630 Refinitiv Data Platform Libraries
- 4 LSEG Due Diligence
- LSEG Due Diligence Portal API
- 4 Refinitiv Due Dilligence Centre
- Rose's Space
- 1.2K Screening
- 18 Qual-ID API
- 13 Screening Deployed
- 23 Screening Online
- 12 World-Check Customer Risk Screener
- 1K World-Check One
- 46 World-Check One Zero Footprint
- 45 Side by Side Integration API
- 2 Test Space
- 3 Thomson One Smart
- 10 TR Knowledge Graph
- 151 Transactions
- 143 REDI API
- 1.8K TREP APIs
- 4 CAT
- 26 DACS Station
- 121 Open DACS
- 1.1K RFA
- 104 UPA
- 191 TREP Infrastructure
- 228 TRKD
- 915 TRTH
- 5 Velocity Analytics
- 9 Wealth Management Web Services
- 86 Workspace SDK
- 11 Element Framework
- 5 Grid
- 18 World-Check Data File
- 1 Yield Book Analytics
- 46 中文论坛