Get RIC for the largest 10 companies in each stock market

I was trying to get the largest 10 companies with respect to the market cap each year for a list of countries over a particular time period. I use a loop like this:
country = ["IR","NL"]
for i in country:
for j in range(2000,2006,5):
Start=str(j)+'-12-31'
instruments = 'SCREEN(U(IN(Equity(active or inactive,public,primary))),IN(TR.ExchangeCountryCode, i),TOP(TR.CompanyMarketCap(SDate=Start), 10, nnumber), CURN=USD)'
field = ["TR.CommonName"]
df,err = ek.get_data(instruments, field)
But in the loop, the "i" is not recognised as item in the country list and the "Start" is not recognised as the variable created within the loop.
Any solution for the problem? or is there a better way to obtain the requested RIC codes?
Thank you.
Best Answer
-
Hi @Jiaman.Xu
you are hardcoding the literal strings 'i' and 'Start' into the string parameter 'instruments' - so the value you are actually passing to the get_data calls looks like:
SCREEN(U(IN(Equity(active or inactive,public,primary))),IN(TR.ExchangeCountryCode,i),TOP(TR.CompanyMarketCap(SDate=Start), 10, nnumber), CURN=USD)'
rather than something like:
SCREEN(U(IN(Equity(active or inactive,public,primary))),IN(TR.ExchangeCountryCode,'IR'),TOP(TR.CompanyMarketCap(SDate='2000-12-31'), 10, nnumber), CURN=USD)'
You need to use python string formatting to substitute the actual values of 'i' and 'Start' into the 'instruments' parameter e.g.
country = ["IR","NL"]
content_df = []
for i in country:
for j in range(2000,2006,5):
Start=str(j)+'-12-31'
instruments = f'SCREEN(U(IN(Equity(active or inactive,public,primary))),IN(TR.ExchangeCountryCode,{i}),TOP(TR.CompanyMarketCap(SDate={Start}), 10, nnumber), CURN=USD)'
field = ["TR.CommonName"]
df,err = ek.get_data(instruments, field)
content_df.append(df)You can read up on Python string formatting on the web .e.g. Python String Formatting Best Practices – Real Python
Note that I am not that familiar with the SCREEN function - so cannot confirm if the above is returning what you are after..
0
Categories
- All Categories
- 3 Polls
- 6 AHS
- 36 Alpha
- 166 App Studio
- 6 Block Chain
- 4 Bot Platform
- 18 Connected Risk APIs
- 47 Data Fusion
- 34 Data Model Discovery
- 685 Datastream
- 1.4K DSS
- 615 Eikon COM
- 5.2K Eikon Data APIs
- 10 Electronic Trading
- Generic FIX
- 7 Local Bank Node API
- 3 Trading API
- 2.9K Elektron
- 1.4K EMA
- 252 ETA
- 556 WebSocket API
- 38 FX Venues
- 14 FX Market Data
- 1 FX Post Trade
- 1 FX Trading - Matching
- 12 FX Trading – RFQ Maker
- 5 Intelligent Tagging
- 2 Legal One
- 23 Messenger Bot
- 3 Messenger Side by Side
- 9 ONESOURCE
- 7 Indirect Tax
- 60 Open Calais
- 275 Open PermID
- 44 Entity Search
- 2 Org ID
- 1 PAM
- PAM - Logging
- 6 Product Insight
- Project Tracking
- ProView
- ProView Internal
- 22 RDMS
- 1.9K Refinitiv Data Platform
- 652 Refinitiv Data Platform Libraries
- 4 LSEG Due Diligence
- LSEG Due Diligence Portal API
- 4 Refinitiv Due Dilligence Centre
- Rose's Space
- 1.2K Screening
- 18 Qual-ID API
- 13 Screening Deployed
- 23 Screening Online
- 12 World-Check Customer Risk Screener
- 1K World-Check One
- 46 World-Check One Zero Footprint
- 45 Side by Side Integration API
- 2 Test Space
- 3 Thomson One Smart
- 10 TR Knowledge Graph
- 151 Transactions
- 143 REDI API
- 1.8K TREP APIs
- 4 CAT
- 27 DACS Station
- 121 Open DACS
- 1.1K RFA
- 104 UPA
- 193 TREP Infrastructure
- 228 TRKD
- 917 TRTH
- 5 Velocity Analytics
- 9 Wealth Management Web Services
- 90 Workspace SDK
- 11 Element Framework
- 5 Grid
- 18 World-Check Data File
- 1 Yield Book Analytics
- 46 中文论坛