Missing data for SP500 using fundamental_and_reference.Definition get_data

Diego.Daprile
Newcomer
Am looking to download the following fields (list below) for SP500 index constituents, from 1995 to yesterday, daily data. Am using the following
import refinitiv.data as
from refinitiv.data.content import fundamental_and_reference
import datetime
rd.open_session()
growth_fields = ["TR.EPSMeanEstLastToNextYrGrowth",
"TR.EPSLTGEstValue(Period=FY1)",
"TR.LTGMean",
"TR.RevenueSmartEstFwdYrGrowth",
"TR.OrganicSalesGrowthMean(Period=FY1)",
"TR.GrowthCapexActValue(Period=FY0)",
"ROE",
"TR.ReturnonAvgCommEqtyPctIncomeAvailabletoCommExclExtraItems5YrAvg(Period=FY0)",
"TR.ROICActValue(Period=FY0)",
"TR.NetProfitMargin(Period=FY0)",
"TR.OperatingMarginPercent(Period=FY0)",
"TR.GrossMargin(Period=FY0)",
"TR.EBITDAMarginPercent(Period=FY0)",
"TR.LTDebtToTtlCapitalPct(Period=FY0)",
"TR.TtlDebtToTtlEquityPct(Period=FY0)",
"TR.EBITIntCov(Period=FY0)"]
lse = fundamental_and_reference.Definition(
["0#.INX"],
fields = growth_fields
).get_data()
Ho do i specify a start and end date? it appears that there are lot of missing data in the cross section, so I am looking to download a time series, and I would like to have a login in place to have the latest available data if the most recent for a given date is not yet available. Ho do I do this?
0
Best Answer
-
Hi @Diego.Daprile ,
Have you tried get_history?
rd.get_history(
universe=["0#.INX"],
fields=["TR.EPSMeanEstLastToNextYrGrowth",
"TR.EPSLTGEstValue(Period=FY1)",
"TR.LTGMean",
"TR.RevenueSmartEstFwdYrGrowth",
"TR.OrganicSalesGrowthMean(Period=FY1)",
"TR.GrowthCapexActValue(Period=FY0)",
"ROE",
"TR.ReturnonAvgCommEqtyPctIncomeAvailabletoCommExclExtraItems5YrAvg(Period=FY0)",
"TR.ROICActValue(Period=FY0)",
"TR.NetProfitMargin(Period=FY0)",
"TR.OperatingMarginPercent(Period=FY0)",
"TR.GrossMargin(Period=FY0)",
"TR.EBITDAMarginPercent(Period=FY0)",
"TR.LTDebtToTtlCapitalPct(Period=FY0)",
"TR.TtlDebtToTtlEquityPct(Period=FY0)",
"TR.EBITIntCov(Period=FY0)"],
start="2024-02-01",
end="2024-02-04",
interval='1D')Else I suggest you use `extended_params`:
import refinitiv.data as rd
from refinitiv.data.content import fundamental_and_reference
import datetime
rd.open_session()
growth_fields = [
"TR.EPSMeanEstLastToNextYrGrowth.date",
"TR.EPSMeanEstLastToNextYrGrowth",
"TR.EPSLTGEstValue(Period=FY1)",
"TR.LTGMean",
"TR.RevenueSmartEstFwdYrGrowth",
"TR.OrganicSalesGrowthMean(Period=FY1)",
"TR.GrowthCapexActValue(Period=FY0)",
"ROE",
"TR.ReturnonAvgCommEqtyPctIncomeAvailabletoCommExclExtraItems5YrAvg(Period=FY0)",
"TR.ROICActValue(Period=FY0)",
"TR.NetProfitMargin(Period=FY0)",
"TR.OperatingMarginPercent(Period=FY0)",
"TR.GrossMargin(Period=FY0)",
"TR.EBITDAMarginPercent(Period=FY0)",
"TR.LTDebtToTtlCapitalPct(Period=FY0)",
"TR.TtlDebtToTtlEquityPct(Period=FY0)",
"TR.EBITIntCov(Period=FY0)"]
lse = fundamental_and_reference.Definition(
["0#.INX"],
fields = growth_fields,
extended_params={"Scale": 6, "SDate": 0, "EDate": -3,
# "FRQ": "FY",
"Curn": "EUR"
}
).get_data()
For details on the extended_params, please watch the tutorials here, they are still relevant to rd.For more fields (e.g.: date), I suggest watching the DIB Video.
0
Categories
- All Categories
- 3 Polls
- 6 AHS
- 36 Alpha
- 166 App Studio
- 6 Block Chain
- 4 Bot Platform
- 18 Connected Risk APIs
- 47 Data Fusion
- 34 Data Model Discovery
- 684 Datastream
- 1.4K DSS
- 615 Eikon COM
- 5.2K Eikon Data APIs
- 10 Electronic Trading
- Generic FIX
- 7 Local Bank Node API
- 3 Trading API
- 2.9K Elektron
- 1.4K EMA
- 250 ETA
- 555 WebSocket API
- 37 FX Venues
- 14 FX Market Data
- 1 FX Post Trade
- 1 FX Trading - Matching
- 12 FX Trading – RFQ Maker
- 5 Intelligent Tagging
- 2 Legal One
- 23 Messenger Bot
- 3 Messenger Side by Side
- 9 ONESOURCE
- 7 Indirect Tax
- 60 Open Calais
- 275 Open PermID
- 44 Entity Search
- 2 Org ID
- 1 PAM
- PAM - Logging
- 6 Product Insight
- Project Tracking
- ProView
- ProView Internal
- 22 RDMS
- 1.9K Refinitiv Data Platform
- 643 Refinitiv Data Platform Libraries
- 4 LSEG Due Diligence
- LSEG Due Diligence Portal API
- 4 Refinitiv Due Dilligence Centre
- Rose's Space
- 1.2K Screening
- 18 Qual-ID API
- 13 Screening Deployed
- 23 Screening Online
- 12 World-Check Customer Risk Screener
- 1K World-Check One
- 46 World-Check One Zero Footprint
- 45 Side by Side Integration API
- 2 Test Space
- 3 Thomson One Smart
- 10 TR Knowledge Graph
- 151 Transactions
- 143 REDI API
- 1.8K TREP APIs
- 4 CAT
- 27 DACS Station
- 121 Open DACS
- 1.1K RFA
- 104 UPA
- 193 TREP Infrastructure
- 228 TRKD
- 915 TRTH
- 5 Velocity Analytics
- 9 Wealth Management Web Services
- 90 Workspace SDK
- 11 Element Framework
- 5 Grid
- 18 World-Check Data File
- 1 Yield Book Analytics
- 46 中文论坛