Merging historical and forecast dataframe yields duplicates

I get duplicate cells when I merge two dataframes: one containing historical data, a second containing forecast data, as follows:
tkrrenew = ['0916.HK', '0958.HK', '0451.HK', '1798.HK']
fdflds = ['CF_NAME', 'TR.EBITDA.rfperiod', 'TR.BasicEpsExclExtraItems.Currency', 'TR.BasicEpsExclExtraItems', 'TR.DpsCommonStock']
param = {'Period': 'FY0', 'SDate': 'FY-2', 'EDate': 'FY0', 'FRQ': 'FY'}
valrenew, err = ek.get_data(tkrrenew, fdflds, param)
frcstfld = ['CF_NAME', 'TR.EPSSmartEst.rfperiod', 'TR.EPSSmartEst', 'TR.DPSMean']
paramfcst = {'Period': 'FY1', 'SDate': '0', 'EDate': '2', 'FRQ': 'FY'}
fcstrenew, err = ek.get_data(tkrrenew, frcstfld, paramfcst)
testrenew = valrenew.merge(fcstrenew, on=['Instrument', 'Name'], how='inner')
The output, after some other commands is as follows:
Apart from .drop_duplicate(subset=['Instrument', 'FY']) which leaves me with:
What can I do to have both historical and forecast data till FY3 in one dataframe. If .join or .append can place the FY1-FY3 in the same column as FY-2 to FY0, that would ideal.
Pls advise.
Best Answer
-
Is this what you're looking for?
valrenew.merge(fcstrenew, on=['Instrument', 'Financial Period Relative' ], how='outer')
This will give you
You can then sort the resulting dataframe on Instrument and then Financial Period Relative column to get chronological view grouped by the stock. You can remove duplicate CF_NAME column (CF_NAME_x or CF_NAME_y), or you can drop CF_NAME field from one of the requests.0
Answers
-
Thanks, Alex & Wasin.
I've rewritten my code such that it now goes as follows:
dffrkFY0 = dffrank[dffrank.FY == 'FY0'] #extract FY0 data
dffrkFY1 = dffrank[dffrank.FY == 'FY-1'] #extract FY-1 data
dffrkFY1.columns = [['Instrument', 'Name', 'FYE', 'RpCrncy','EstEPS','EstDPS','EstBVPS','PxCrncy','Price',\
'FXCode', 'FXRate', 'EstPER', 'EstPB', 'EstD_Yld']]
# dffwd is an earlier DataFrame
dffmerge = pd.concat([dffwd, dffrkFY0, dffrkFY1], join='inner')
dffmerge = dffmerge.sort_values(['Instrument', 'FYE'])
dffmerge = dffmerge.reset_index(drop=True)
dffmerge[:15]Thanks for your effort; much appreciated.
Later on in the code, I re-jig the <Name> such that it doesn't appear at such an odd position.
0
Categories
- All Categories
- 3 Polls
- 6 AHS
- 36 Alpha
- 166 App Studio
- 6 Block Chain
- 4 Bot Platform
- 18 Connected Risk APIs
- 47 Data Fusion
- 34 Data Model Discovery
- 685 Datastream
- 1.4K DSS
- 615 Eikon COM
- 5.2K Eikon Data APIs
- 10 Electronic Trading
- Generic FIX
- 7 Local Bank Node API
- 3 Trading API
- 2.9K Elektron
- 1.4K EMA
- 252 ETA
- 556 WebSocket API
- 38 FX Venues
- 14 FX Market Data
- 1 FX Post Trade
- 1 FX Trading - Matching
- 12 FX Trading – RFQ Maker
- 5 Intelligent Tagging
- 2 Legal One
- 23 Messenger Bot
- 3 Messenger Side by Side
- 9 ONESOURCE
- 7 Indirect Tax
- 60 Open Calais
- 275 Open PermID
- 44 Entity Search
- 2 Org ID
- 1 PAM
- PAM - Logging
- 6 Product Insight
- Project Tracking
- ProView
- ProView Internal
- 22 RDMS
- 1.9K Refinitiv Data Platform
- 652 Refinitiv Data Platform Libraries
- 4 LSEG Due Diligence
- LSEG Due Diligence Portal API
- 4 Refinitiv Due Dilligence Centre
- Rose's Space
- 1.2K Screening
- 18 Qual-ID API
- 13 Screening Deployed
- 23 Screening Online
- 12 World-Check Customer Risk Screener
- 1K World-Check One
- 46 World-Check One Zero Footprint
- 45 Side by Side Integration API
- 2 Test Space
- 3 Thomson One Smart
- 10 TR Knowledge Graph
- 151 Transactions
- 143 REDI API
- 1.8K TREP APIs
- 4 CAT
- 27 DACS Station
- 121 Open DACS
- 1.1K RFA
- 104 UPA
- 193 TREP Infrastructure
- 228 TRKD
- 917 TRTH
- 5 Velocity Analytics
- 9 Wealth Management Web Services
- 90 Workspace SDK
- 11 Element Framework
- 5 Grid
- 18 World-Check Data File
- 1 Yield Book Analytics
- 46 中文论坛