OWNERSHIP DATA BY TYPE AND COUNTRY: EIKON API FOR PYTHON

Dear Developer Community,
I am trying to access ownership data. For each firm-year, I seek PctOfSharesOutHeld by investor type in a particular country.
I need guidance with the required modificaitons in the following code, I think this requires sum of PctOfSharesOutHeld by InvestorType and by InvAddrCountry. Please guide me regarding the implementation.
data, err = ek.get_data(
instruments=['4449.T', 'ADV.OQ', 'WEBO.MI'],
fields=[
'TR.InvestorFullName',
'TR.SharesHeld',
'TR.SharesHeld.calcdate',
'TR.PctOfSharesOutHeld',
'TR.InstrStatTypeValue',
'TR.InvestorType',
'TR.InvestorTypeId',
'TR.CategoryOwnershipPct',
'TR.InvParentType',
'TR.InvInvestmentStyleCode',
'TR.OwnTrnverRating',
'TR.InvAddrCountry',
'TR.InvestorAddrCity'
],
parameters={'Frq':'Y','SDate': '2013-12-31','EDate':'2014-12-31'}
)
Best Answer
-
Dear Jirapongse,
Thank you for your reply.
I think I am close, but I need some more assistance. I aim to extract ownership data for firms over time in the following format (screenshot attached).
The recent code you shared specifies a particular investor in the parameter. However, I do not want to limit it to any investor. As in the following snapshot, 'Sum(TR.PctOfSharesOutheld)' should return the sum of the percentage of shares outheld by an investor type within the country or by country and investor type.
Thanks Again,
Regards,
Amjad
0
Answers
-
Thank you for reaching out to us.
Is this question about the Python dataframe manupulations? If yes, the code should look like this:
data, err = ek.get_data( instruments=['4449.T', 'ADV.OQ', 'WEBO.MI'], fields=[ 'TR.PctOfSharesOutHeld', 'TR.InvestorType', 'TR.InvestorTypeId', 'TR.InvAddrCountry' ] ) df = data.groupby(['Instrument', 'Investor Type Description ID','Investor Address Country'], sort=True).sum().reset_index() df
For more information, please refer to the dataframe document.
0 -
Dear Jirapongse,
Thank you for your swift response.
The question does not pertain to Python data manipulation. Rather, I want to set the parameters within the data extraction code. For example, the following Excel formula brings forward the sum of shares outheld by investor type.
=@RDP.Data($A$2,"SUM(TR.PctOfSharesOutHeld)","TheInvestorType=#1 Sdate=#2 CH=Fd",,$L$7,C$1)
I seek to download bulk data. I want to perform a similar operation but within a subgroup of the country of address.
Looking forward to hearing from you.
Regards,
Amjad
0 -
Thank you for the explanation. You can convert the =@RDP.Data formula to the Python by using the same fields, and parameters, as shown below.
data, err = ek.get_data( instruments=['4449.T', 'ADV.OQ', 'WEBO.MI'], fields=[ 'SUM(TR.PctOfSharesOutHeld)' ], parameters={'TheInvestorType':301,'SDate':'2024-01-01'} ) data
If you have questions regarding the parameters used in the =@RDP.Data formula, please contact the helpdesk support team directly via MyAccount. After you get the =@RDP.Data formula, you can convent it to the Python code.
0 -
Categories
- All Categories
- 3 Polls
- 6 AHS
- 36 Alpha
- 166 App Studio
- 6 Block Chain
- 4 Bot Platform
- 18 Connected Risk APIs
- 47 Data Fusion
- 34 Data Model Discovery
- 685 Datastream
- 1.4K DSS
- 615 Eikon COM
- 5.2K Eikon Data APIs
- 10 Electronic Trading
- Generic FIX
- 7 Local Bank Node API
- 3 Trading API
- 2.9K Elektron
- 1.4K EMA
- 252 ETA
- 556 WebSocket API
- 38 FX Venues
- 14 FX Market Data
- 1 FX Post Trade
- 1 FX Trading - Matching
- 12 FX Trading – RFQ Maker
- 5 Intelligent Tagging
- 2 Legal One
- 23 Messenger Bot
- 3 Messenger Side by Side
- 9 ONESOURCE
- 7 Indirect Tax
- 60 Open Calais
- 275 Open PermID
- 44 Entity Search
- 2 Org ID
- 1 PAM
- PAM - Logging
- 6 Product Insight
- Project Tracking
- ProView
- ProView Internal
- 22 RDMS
- 1.9K Refinitiv Data Platform
- 652 Refinitiv Data Platform Libraries
- 4 LSEG Due Diligence
- LSEG Due Diligence Portal API
- 4 Refinitiv Due Dilligence Centre
- Rose's Space
- 1.2K Screening
- 18 Qual-ID API
- 13 Screening Deployed
- 23 Screening Online
- 12 World-Check Customer Risk Screener
- 1K World-Check One
- 46 World-Check One Zero Footprint
- 45 Side by Side Integration API
- 2 Test Space
- 3 Thomson One Smart
- 10 TR Knowledge Graph
- 151 Transactions
- 143 REDI API
- 1.8K TREP APIs
- 4 CAT
- 27 DACS Station
- 121 Open DACS
- 1.1K RFA
- 104 UPA
- 193 TREP Infrastructure
- 228 TRKD
- 917 TRTH
- 5 Velocity Analytics
- 9 Wealth Management Web Services
- 90 Workspace SDK
- 11 Element Framework
- 5 Grid
- 18 World-Check Data File
- 1 Yield Book Analytics
- 46 中文论坛