Workspace Add Analysis>EMA display different numbers than pd.ewm using Python

Using the following snippet as in a former question [Is it possible to pull Exponential Moving Average data using the RD Library?](https://community.developers.refinitiv.com/discussion/112022/is-it-possible-to-pull-exponential-moving-average-data-using-the-rd-library/p1?tab=accepted) for `TSLA.O` will give an EMA endpoint estimate of `412.071` at the time of writing.
Code:
import refinitiv.data as rd
rd.open_session()
import pandas as pd
df = rd.get_data(
universe = ['TSLA.O'],
fields = ['TR.PriceCloseDate','TR.PriceClose'],
parameters={"SDate":"-50" , "EDate":"0"})
df['EMA 10'] = df['Price Close'].ewm(span=10).mean().round(3)
df
Output:
I find it a bit puzzling that using Add Analysis > Moving Average Exponential produces different numbers. The three last numbers from the same scenario in the screenshot below are : 412.064, 415.999 and 418.578
And here are the settings for the EMA:
Does anyone know the exact method for EMA that us used in Workspaces.
Or does anyone have a possible explanation for the differences here?
Best Answers
-
Thank you for your suggestion! The numbers may be similar, but definitely not equal as far as I can tell..? Do you have any further suggestions?
0 -
I found that the first calculated values are different. On Workspace, the EMA 10 value on 13 Jul 10 is 1.272.
I found that the pandas_ta package can calculate the EMA values properly.
import pandas_ta as ta df = ld.get_data( universe = ['TSLA.O'], fields = ['TR.PriceCloseDate','TR.PriceClose'], parameters={"SDate":"2010-06-29" , "EDate":"0"}) df["EMA 10"] = ta.ema(df["Price Close"], length=10).round(3)
0
Answers
-
Thank you for reaching out to us.
It may relate to the start date (SDate). I think Workspace calculates EMA since the first date.
df = rd.get_data( universe = ['TSLA.O'], fields = ['TR.PriceCloseDate','TR.PriceClose'], parameters={"SDate":"2010-06-29" , "EDate":"0"}) df['EMA 10'] = df['Price Close'].ewm(span=10).mean().round(3) df
Moreover, if I change the SDate to -100, the data is similar to Workspace.
df = rd.get_data( universe = ['TSLA.O'], fields = ['TR.PriceCloseDate','TR.PriceClose'], parameters={"SDate":"-100" , "EDate":"0"}) df['EMA 10'] = df['Price Close'].ewm(span=10).mean().round(3) df
0 -
Thank you! That certainly cleared things up!
0
Categories
- All Categories
- 3 Polls
- 6 AHS
- 36 Alpha
- 166 App Studio
- 6 Block Chain
- 4 Bot Platform
- 18 Connected Risk APIs
- 47 Data Fusion
- 34 Data Model Discovery
- 684 Datastream
- 1.4K DSS
- 615 Eikon COM
- 5.2K Eikon Data APIs
- 10 Electronic Trading
- Generic FIX
- 7 Local Bank Node API
- 3 Trading API
- 2.9K Elektron
- 1.4K EMA
- 250 ETA
- 555 WebSocket API
- 37 FX Venues
- 14 FX Market Data
- 1 FX Post Trade
- 1 FX Trading - Matching
- 12 FX Trading – RFQ Maker
- 5 Intelligent Tagging
- 2 Legal One
- 23 Messenger Bot
- 3 Messenger Side by Side
- 9 ONESOURCE
- 7 Indirect Tax
- 60 Open Calais
- 275 Open PermID
- 44 Entity Search
- 2 Org ID
- 1 PAM
- PAM - Logging
- 6 Product Insight
- Project Tracking
- ProView
- ProView Internal
- 22 RDMS
- 1.9K Refinitiv Data Platform
- 643 Refinitiv Data Platform Libraries
- 4 LSEG Due Diligence
- LSEG Due Diligence Portal API
- 4 Refinitiv Due Dilligence Centre
- Rose's Space
- 1.2K Screening
- 18 Qual-ID API
- 13 Screening Deployed
- 23 Screening Online
- 12 World-Check Customer Risk Screener
- 1K World-Check One
- 46 World-Check One Zero Footprint
- 45 Side by Side Integration API
- 2 Test Space
- 3 Thomson One Smart
- 10 TR Knowledge Graph
- 151 Transactions
- 143 REDI API
- 1.8K TREP APIs
- 4 CAT
- 27 DACS Station
- 121 Open DACS
- 1.1K RFA
- 104 UPA
- 193 TREP Infrastructure
- 228 TRKD
- 915 TRTH
- 5 Velocity Analytics
- 9 Wealth Management Web Services
- 90 Workspace SDK
- 11 Element Framework
- 5 Grid
- 18 World-Check Data File
- 1 Yield Book Analytics
- 46 中文论坛